A Smart Forecasting Approach to District Energy Management

نویسندگان

  • Baris Yuce
  • Monjur Mourshed
  • Yacine Rezgui
  • Joseph H. M. Tah
چکیده

This study presents a model for district-level electricity demand forecasting using a set of Artificial Neural Networks (ANNs) (parallel ANNs) based on current energy loads and social parameters such as occupancy. A comprehensive sensitivity analysis is conducted to select the inputs of the ANN by considering external weather conditions, occupancy type, main income providers’ employment status and related variables for the fuel poverty index. Moreover, a detailed parameter tuning is conducted using various configurations for each individual ANN. The study also demonstrates the strength of the parallel ANN models in different seasons of the years. In the proposed district level energy forecasting model, the training and testing stages of parallel ANNs utilise dataset of a group of six buildings. The aim of each individual ANN is to predict electricity consumption and the aggregated demand in sub-hourly time-steps. The inputs of each ANN are determined using Principal Component Analysis (PCA) and Multiple Regression Analysis (MRA) methods. The accuracy and consistency of ANN predictions are evaluated using Pearson coefficient and average percentage error, and against four seasons: winter, spring, summer, and autumn. The lowest prediction error for the aggregated demand is about 4.51% for winter season and the largest prediction error is found as 8.82% for spring season. The results demonstrate that peak demand can be predicted successfully, and utilised to forecast and provide demand-side flexibility to the aggregators for effective management of district energy systems.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A New Iterative Neural Based Method to Spot Price Forecasting

Electricity price predictions have become a major discussion on competitive market under deregulated power system. But, the exclusive characteristics of electricity price such as non-linearity, non-stationary and time-varying volatility structure present several challenges for this task. In this paper, a new forecast strategy based on the iterative neural network is proposed for Day-ahead price...

متن کامل

A two-step approach to energy management in smart micro-grids aimed at improving social welfare levels and the demand side management effect

Demand-side management is one of the ways to create interaction between the microgrid and increase consumer participation in management schemes. Different algorithms and strategies have been used to execute consumption management programs that often covering a limited number of loads in several specific types. In this paper, first, the load shift method as an optimization problem to reduce syst...

متن کامل

Designing Decision Maker in a Smart Home for Energy Consumption Optimization Using Fuzzy Modeling

existed electricity grids deliver produced power to the consumer passing through transmission and distribution grids. According to high losses of these grids in transmission level and inexistence of bilateral interaction for simultaneous information exchange, a concept of smart grids were made by capabilities such as consciously participation of consumers in the smart electricity grids, an amou...

متن کامل

Micro Energy Management of Distributed Generations Inside Smart Micro Grids

A campus based smart micro grid model that combined power and heat is presented. In this study, optimal scheduling of distributed generations inside these smart micro grids is determined based on demand forecasting, solar power forecasting and wind power forecasting by artificial neural network (ANN). The proposed model is then evaluated through economical efficiency, environment efficiency and...

متن کامل

A Dynamic Game Approach for Demand-Side Management: Scheduling Energy Storage with Forecasting Errors

Smart metering infrastructure allows for two-way communication and power transfer. Based on this promising technology, we propose a demand-side management (DSM) scheme for a residential neighbourhood of prosumers. Its core is a discrete time dynamic game to schedule individually owned home energy storage. The system model includes an advanced battery model, local generation of renewable energy,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017